
Elpy Documentation
Release 1.29.1

Jorgen Schäfer

May 31, 2019

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Installation . 3

2 Concepts 5
2.1 Configuration . 5
2.2 The RPC Process . 5
2.3 Backends . 6
2.4 Virtual Envs . 6
2.5 Modules . 6

3 Editing 9
3.1 Emacs Basics . 9
3.2 Moving By Indentation . 10
3.3 Moving the Current Region . 10

4 IDE Features 11
4.1 Projects . 11
4.2 Completion . 12
4.3 Navigation . 12
4.4 Interactive Python . 13
4.5 Syntax Checking . 16
4.6 Documentation . 17
4.7 Debugging . 17
4.8 Testing . 18
4.9 Refactoring . 18
4.10 Django . 19
4.11 Profiling . 19

5 Extending Elpy 21
5.1 Writing Modules . 21
5.2 Writing Test Runners . 21
5.3 Running Tests: . 22

6 Indices and tables 23

Index 25

i

ii

Elpy Documentation, Release 1.29.1

Elpy is the Emacs Python Development Environment. It aims to provide an easy to install, fully-featured environment
for Python development.

Contents:

Contents 1

Elpy Documentation, Release 1.29.1

2 Contents

CHAPTER 1

Introduction

1.1 Overview

Elpy is an extension for the Emacs text editor to work with Python projects. This documentation tries to explain how to
use Elpy to work on Python project using Emacs, but it does not aim to be an introduction to either Emacs or Python.

You can read a quick tour of Emacs, or read the built-in tutorial by running C-h t in the editor. That is, you hold
down the control key and hit h (the canonical help key in Emacs), release both, and hit t (for tutorial).

For Python, you can read the basic tutorial. If you already know Python, you should check out some best practices.

Once you have these basics, you can go on to install Elpy.

1.2 Installation

1.2.1 With use-package

Simply add the following lines to you .emacs:

(use-package elpy
:ensure t
:init
(elpy-enable))

Or if you want to defer Elpy loading:

(use-package elpy
:ensure t
:defer t
:init
(advice-add 'python-mode :before 'elpy-enable))

3

http://www.gnu.org/s/emacs/
http://www.python.org/
https://www.gnu.org/software/emacs/tour/
https://docs.python.org/3/tutorial/index.html
http://docs.python-guide.org/en/latest/

Elpy Documentation, Release 1.29.1

1.2.2 Manually from Melpa

The main Elpy package is installed via the Emacs package interface, package.el. First, you have to add Elpy’s
package archive to your list of archives, though. Add the following code to your .emacs file and restart Emacs:

(require 'package)
(add-to-list 'package-archives

'("melpa-stable" . "https://stable.melpa.org/packages/"))

Now you can run M-x package-refresh-contents to download a fresh copy of the archive contents, and M-x
package-install RET elpy RET to install elpy. If you want to enable Elpy by default, you can simply add
the following to your .emacs:

(package-initialize)
(elpy-enable)

Congratulations, Elpy is now successfully installed!

1.2.3 From apt (Debian 10 an Ubuntu 18.10)

Users of Debian 10 or Ubuntu 18.10 can skip the instructions above this line and may simply install Elpy and all of its
recommended dependencies with the following command::

sudo apt install elpa-elpy

Elpy can then be activated by running M-x elpy-enable. This can be made automatic by adding the following to
your .emacs:

(elpy-enable)

In order to use all the features (such as navigation with M-.), you’ll need to install some python libraries. You can do
that easily by typing M-x elpy-config RET, and following the instructions.

4 Chapter 1. Introduction

CHAPTER 2

Concepts

2.1 Configuration

You can easily configure Elpy to your own preferences. All Customize Options below are accessible via this interface.
Elpy builds heavily upon existing extensions for Emacs. The configuration interface tries to include the options for
those as well.

M-x elpy-config
Show the current Elpy configuration, point out possible problems, and provide a quick interface to relevant
customization options.

Missing packages can be installed right from this interface. Be aware that this does use your currently-selected
virtual env. If there is no current virtual env, it will suggest installing packages globally. This is rarely what you
want.

2.2 The RPC Process

Elpy works by starting a Python process in the background and communicating with it through a basic Remote Pro-
cedure Call (RPC) interface. Ideally, you should never see this process and not worry about it, but when things don’t
work as expected, it’s good to know what’s going on in the background.

Every project and virtual env combination gets their own RPC process. You can see them both in the process list (M-x
list-process) as well as in the buffer list (C-x C-b) as buffers named *elpy-rpc[...]*.

By default, Elpy will also find the library root of the current file and pass that to the RPC functions. The library root
is the directory from which the current file can be imported.

There are a few options and commands related to the RPC process.

M-x elpy-rpc-restart
Close all running RPC processes. Elpy will re-start them on demand with current settings.

5

Elpy Documentation, Release 1.29.1

elpy-rpc-python-command (Customize Option)
The Python interpreter Elpy should use to run the RPC process. This defaults to "python", which should be
correct for most cases, as a virtual env should make that the right interpreter.

Please do note that this is not an interactive interpreter, so do not set this to "ipython" or similar.

elpy-rpc-large-buffer-size (Customize Option)
The size in character starting from which Elpy will transfer buffer contents via temporary files instead of via the
normal RPC mechanism.

When Elpy communicates with the RPC process, it often needs to tell Python about the contents of the current
buffer. As the RPC protocol encodes all data in JSON, this can be a bit slow for large buffers. To speed things
up, Elpy can transfer file contents in temporary files, which is a lot faster for large files, but slightly slower for
small ones.

elpy-rpc-pythonpath (Customize Option)
A directory to add to the PYTHONPATH for the RPC process. This should point to the directory where the elpy
module is installed. Usually, there is no need to change this.

2.3 Backends

For introspection and analysis of Python sources, Elpy mainly relies on Jedi. Jedi is known to have some problems
coping with badly-formatted Python.

2.4 Virtual Envs

Elpy has full support for Python’s virtual envs. Every RPC process is associated with a specific virtual env and
completions are done based on that environment.

Outside of RPC processes, though, it is not easy to have more than one virtual env active at the same time. Elpy allows
you to set a single global virtual env and change it whenever you like, though.

M-x pyvenv-workon

M-x pyvenv-activate

M-x pyvenv-deactivate
These commands are the main interaction point with virtual envs, mirroring the normal activate and
deactivate commands of virtual envs and the workon command of virtualenvwrapper.sh.

The pyvenv-workon command will allow auto-completion of existing virtual envs and also supports vir-
tualenvwrapper’s setup hooks to set environment variables.

Elpy won’t pollute your Emacs command namespaces, but it might be an idea to create an alias for the workon
command:

(defalias 'workon 'pyvenv-workon)

2.5 Modules

As the last concept, Elpy has a number of optional features you can enable or disable as per your preferences.

6 Chapter 2. Concepts

https://github.com/davidhalter/jedi/
https://github.com/davidhalter/jedi/

Elpy Documentation, Release 1.29.1

elpy-modules (Customize Option)
The list of modules to activate by default. See the section on Writing Modules for details on how to write your
own modules.

2.5. Modules 7

Elpy Documentation, Release 1.29.1

8 Chapter 2. Concepts

CHAPTER 3

Editing

3.1 Emacs Basics

Elpy is an extension to Emacs, and as such the standard bindings in Emacs are available. This manual is not meant to
be an introduction to Emacs, but this section will still highlight some features in Emacs that are especially useful for
Python editing.

Movement keys in Emacs often use fbnp for forward, backward, next (down) and previous (up). k and backspace
(DEL) are for deleting. These are combined with the Control, Meta and Control-Meta modifiers. Control
generally refers to the simplest form. C-f moves one character forward. Meta changes this to affect words, that is,
consecutive sequences of alphanumeric characters. The Control-Meta combination then affects whole expressions.

In the following table, | refers to the position of point.

Before Key After
|hello_world C-f h|ello_world
|hello_world M-f hello|_world
|hello_world C-M-f hello_world|

Expression-based commands will also work on strings, tuples, dictionaries, or any balanced groups of parentheses.
This works for all movement keys (f, b, n, p`), with next and previous moving to the next or previous group of
parens. It also works with forward and backward deletion (d and DEL/<backspace>, respectively) for character
and word groups, but not for expressions. To delete the expression after point, use C-M-k. For the expression before
point, you can use C-M-b C-M-k.

If you enable subword-mode, Emacs will also consider CamelCase to be two words instead of one for the purpose
of these operations.

In addition to the above, Emacs also supports moving up or down inside nested parentheses groups. C-M-d will
move down into the next enclosed group of parentheses, while C-M-u will move up to the directly enclosing group of
parentheses.

Finally, a lot of Elpy’s commands change their behavior when the prefix argument is given. That is, hit C-u before the
command. In Elpy, the prefix argument often disables any attempt by the command at being smart, in case it would

9

Elpy Documentation, Release 1.29.1

get it wrong.

3.2 Moving By Indentation

C-down (elpy-nav-forward-block)

C-up (elpy-nav-backward-block)
These commands are used to navigate between lines with same indentation as the current line. Point should be
placed on the first non-whitespace character of the line and then use C-down to move forward or C-up to move
backward.

C-left (elpy-nav-backward-indent)

C-right (elpy-nav-forward-indent)
These commands are used to navigate between indentation levels. C-left moves point to previous indent level or
over previous word. C-right moves point to next indent level or over the next word.

3.3 Moving the Current Region

M-down (elpy-nav-move-line-or-region-down)

M-up (elpy-nav-move-line-or-region-up)

M-left (elpy-nav-indent-shift-left)

M-right (elpy-nav-indent-shift-right)
Elpy can move the selected region (or the current line if no region is selected) by using the cursor keys with
meta. Left and right will dedent or indent the code, while up and down will move it line-wise up or down,
respectively.

10 Chapter 3. Editing

CHAPTER 4

IDE Features

4.1 Projects

Elpy supports the notion of projects, a related collection of files under a common directory. This common directory is
called the project root. A number of Elpy’s commands work on all files inside the project root.

C-c C-f (elpy-find-file)
Find a file in the current project. This uses a search-as-you-type interface for all files under the project root.

A prefix argument enables “do what I mean” mode. On an import statement, it will try to open the module
imported. Elsewhere in a file, it will look for an associated test or implementation file, and if found, open that.
If this fails, either way, it will fall back to the normal find file in project behavior.

If the current file is called foo.py, then this will search for a test_foo.py in the same directory, or in a
test or tests subdirectory. If the current file is already called test_foo.py, it will try and find a foo.py
nearby.

This command uses find-file-in-project under the hood, so see there for more options.

C-c C-s (elpy-rgrep-symbol)
Search the files in the current project for a string. By default, this uses the symbol at point. With a prefix
argument, it will prompt for a regular expression to search.

This is basically a grep -r through the project.

In addition to these two commands, elpy-check also supports optionally checking all files in the current project.

Elpy’s idea of the project root and which files belong to a project and which don’t can be influenced as well.

M-x elpy-set-project-root
Set the current project root directory. This directory should contain all files related to the current project.

elpy-project-ignored-directories (Customize Option)
When Elpy searches for files in the current project, it will ignore files in directories listed here.

elpy-project-root-finder-functions (Customize Option)
To find the project root, Elpy can utilize a number of heuristics. With this option, you can configure which are
used.

11

https://github.com/technomancy/find-file-in-project

Elpy Documentation, Release 1.29.1

To configure Elpy specifically for a single project, you can use Emacs’ Directory Variables. Elpy provides a simple
interface to this.

M-x elpy-set-project-variable
Set or change the value of a project-wide variable. With a prefix argument, the value for the variable is removed.

This only takes effect in new buffers.

4.2 Completion

When you type Python code, Elpy will try and figure out possible completions and provide them in a suggestion
window. If Elpy doesn’t do so automatically, you can force it to complete right where you are.

M-TAB (elpy-company-backend)
Provide completion suggestions for a completion at point.

You can use cursor keys or M-n and M-p to scroll through the options, RET to use the selected completion, or TAB to
complete the common part.

On any completion option, C-d or <f1> will display a temporary window with documentation. C-w will display a
temporary window showing the source code of the completion to get some context.

Elpy uses Company Mode for the completion interface, so its documentation is a good place for further information.

elpy-get-info-from-shell (Customize Option)
If t, use the shell to gather docstrings and completions. Normally elpy provides completion and documenta-
tion using static code analysis (from jedi). With this option set to t, elpy will add the completion candidates
and the docstrings from the associated python shell. This allows to have decent completion candidates and
documentation when the static code analysis fails. the static code analysis fails.

4.3 Navigation

Elpy supports some advanced navigation features inside Python projects.

M-. (elpy-goto-definition)
Go to the location where the identifier at point is defined. This is not always easy to make out, so the result can
be wrong. Also, the backends can not always identify what kind of symbol is at point. Especially after a few
indirections, they have basically no hope of guessing right, so they don’t.

C-x 4 M-. (elpy-goto-definition-other-window)
Same as elpy-go-to-definition (with the same caveats) but goes to the definition of the symbol at point in other
window, if defined.

M-* (pop-tag-mark)
Go back to the last place where M-. was used, effectively turning M-. and M-* into a forward and backward
motion for definition lookups.

C-c C-o (elpy-occur-definitions)
Search the buffer for a list of definitions of classes and functions.

If you use an Emacs version superior to 25, elpy will define the necessary backends for the xref package.

M-. (xref-find-definitions)
Find the definition of the identifier at point.

C-x 4 . (xref-find-definition-other-window)
Like M-. but switch to the other window.

12 Chapter 4. IDE Features

https://www.gnu.org/software/emacs/manual/html_node/emacs/Directory-Variables.html
https://company-mode.github.io/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Xref.html

Elpy Documentation, Release 1.29.1

C-x 5 . (xref-find-definition-other-frame)
Like M-. but switch to the other frame.

M-, (xref-pop-marker-stack)
Go back to the last place where M-. was used, effectively turning M-. and M-, into a forward and backward
motion for definition lookups.

M-? (xref-find-references)
Find references for an identifier of the current buffer.

C-M-. (xref-find-apropos)
Find all meaningful symbols that match a given pattern.

4.4 Interactive Python

Emacs can run a Python interpreter in a special buffer, making it much easier to send code snippets over. Elpy provides
additional functionality to seamlessly work with interactive Python in a style similar to ESS.

4.4.1 Interpreter Setup

Elpy uses the Python interpreter setup from the Emacs python package. This section briefly summarizes some
common setups; add the one you need to your .emacs file. Note that the code below (and Elpy in general) require at
least Emacs 24.4.

Use the Python standard interpreter (default):

(setq python-shell-interpreter "python"
python-shell-interpreter-args "-i")

Use Jupyter console (recommended for interactive Python):

(setq python-shell-interpreter "jupyter"
python-shell-interpreter-args "console --simple-prompt"
python-shell-prompt-detect-failure-warning nil)

(add-to-list 'python-shell-completion-native-disabled-interpreters
"jupyter")

Use IPython:

(setq python-shell-interpreter "ipython"
python-shell-interpreter-args "-i --simple-prompt")

Note that various issues with plotting have been reported when running IPython 5 in Emacs under Windows. We
recommend using Jupyter console instead.

If you have an older version of IPython and the above code does not work for you, you may also try:

(setenv "IPY_TEST_SIMPLE_PROMPT" "1")
(setq python-shell-interpreter "ipython"

python-shell-interpreter-args "-i")

As an IPython_ user, you might be interested in the `Emacs IPython
Notebook`_ or an `Elpy layer`_ for Spacemacs_, too.

4.4. Interactive Python 13

http://ess.r-project.org

Elpy Documentation, Release 1.29.1

4.4.2 The Shell Buffer

C-c C-z (elpy-shell-switch-to-shell)
Switch to buffer with a Python interpreter running, starting one if necessary.

By default, Elpy tries to find the root directory of the current project (git, svn or hg repository, python package
or projectile project) and starts the python interpreter here. This behaviour can be suppressed with the option
elpy-shell-use-project-root.

M-x elpy-shell-toggle-dedicated-shell
By default, python buffers are all attached to a same python shell (that lies in the *Python* buffer), meaning that
all buffers and code fragments will be send to this shell. elpy-shell-toggle-dedicated-shell attaches a dedicated
python shell (not shared with the other python buffers) to the current python buffer. To make this the default
behavior (like the deprecated option elpy-dedicated-shells did), use the following snippet:

(add-hook 'elpy-mode-hook (lambda () (elpy-shell-toggle-dedicated-shell 1)))

M-x elpy-shell-set-local-shell
Attach the current python buffer to a specific python shell (whose name is asked with completion). You can use
this function to have one python shell per project, with:

(add-hook 'elpy-mode-hook (lambda () (elpy-shell-set-local-shell (elpy-project-
→˓root))))

C-c C-k (elpy-shell-kill)
Kill the associated python shell.

C-c C-K (elpy-shell-kill-all)
Kill all active python shells.

4.4.3 Evaluating code fragments

Elpy provides commands to send the current Python statement (e), function definition (f), class definition (c), top-
level statement (s), group of Python statements (g), cell (w), region (r), or buffer (b) to the Python shell for evaluation.
These commands are bound to prefix C-c C-y, followed by the single character indicating what to send; e.g., C-c
C-y e sends the Python statement at point.

Each of the commands to send code fragments to the shell has four variants, one for each combination of: whether or
not the point should move after sending (“step”), and whether or not the Python shell should be focused after sending
(“go”). Step is activated by C-, go by S-. For example:

C-c C-y e (elpy-shell-send-statement)
Send the current statement to the Python shell and keep point position. Here statement refers to the Python
statement the point is on, including potentially nested statements and, if point is on an if/elif/else clause, the
entire if statement (with all its elif/else clauses).

C-c C-y C-e (elpy-shell-send-statement-and-step)
Send the current statement to the Python shell and move point to first subsequent statement.

Also bound to C-RET.

C-c C-y E (elpy-shell-send-statement-and-go)
Send the current statement to the Python shell, keeping point position, and switch focus to the Python shell
buffer.

C-c C-y C-S-E (elpy-shell-send-statement-and-step-and-go)
Send the current statement to the Python shell, move point to first subsequent statement, and switch focus to the
Python shell buffer.

14 Chapter 4. IDE Features

Elpy Documentation, Release 1.29.1

Elpy provides support for sending multiple statements to the shell.

C-c C-y O (elpy-shell-send-group-and-step)
Send the current or next group of top-level statements to the Python shell and step. A sequence of top-level
statements is a group if they are not separated by empty lines. Empty lines within each top-level statement are
ignored.

If the point is within a statement, send the group around this statement. Otherwise, go to the top-level statement
below point and send the group around this statement.

C-c C-y W (elpy-shell-send-codecell-and-step)
Send the current code cell to the Python shell and step. A code cell is a piece of code surrounded by special
separator lines; see below. For example, you can insert two lines starting with ## to quickly send the code
in-between.

elpy-shell-codecell-beginning-regexp (Customize Option)
Regular expression for matching a line indicating the beginning of a code cell. By default, ##.* is treated as
a beginning of a code cell, as are the code cell beginnings in Python files exported from IPython or Jupyter
notebooks (e.g., # <codecell> or # In[1]:).

elpy-shell-cell-boundary-regexp (Customize Option)
Regular expression for matching a line indicating the boundary of a cell (beginning or ending). By default, ##.
* is treated as a cell boundary, as are the boundaries in Python files exported from IPython or Jupyter notebooks
(e.g., # <markdowncell>, # In[1]:, or # Out[1]:).

Note that elpy-shell-codecell-beginning-regexp must also match the cell boundaries defined
here.

The functions for sending the entire buffer have special support for avoiding accidental code execution, e.g.:

C-c C-y r (elpy-shell-send-region-or-buffer)
Send the the active region (if any) or the entire buffer (otherwise) to the Python shell and keep point position.

When sending the whole buffer, this command will also escape any uses of the if __name__ ==
'__main__' idiom, to prevent accidental execution of a script. If you want this to be evaluated, pass a
prefix argument with C-u.

Also bound to C-c C-c.

The list of remaining commands to send code fragments is:

C-c C-y s (elpy-shell-send-top-statement)

C-c C-y S (elpy-shell-send-top-statement-and-go)

C-c C-y f (elpy-shell-send-defun)

C-c C-y F (elpy-shell-send-defun-and-go)

C-c C-y c (elpy-shell-send-defclass)

C-c C-y C (elpy-shell-send-defclass-and-go)

C-c C-y o (elpy-shell-send-group)

C-c C-y O (elpy-shell-send-group-and-go)

C-c C-y w (elpy-shell-send-codecell)

C-c C-y W (elpy-shell-send-codecell-and-go)

C-c C-y R (elpy-shell-send-region-or-buffer-and-go)

C-c C-y b (elpy-shell-send-buffer)

C-c C-y B (elpy-shell-send-buffer-and-go)

4.4. Interactive Python 15

Elpy Documentation, Release 1.29.1

C-c C-y C-s (elpy-shell-send-top-statement-and-step)

C-c C-y C-S-S (elpy-shell-send-top-statement-and-step-and-go)

C-c C-y C-f (elpy-shell-send-defun-and-step)

C-c C-y C-S-F (elpy-shell-send-defun-and-step-and-go)

C-c C-y C-c (elpy-shell-send-defclass-and-step)

C-c C-y C-S-C (elpy-shell-send-defclass-and-step-and-go)

C-c C-y C-S-O (elpy-shell-send-group-and-step-and-go)

C-c C-y C-W (elpy-shell-send-codecell-and-step-and-go)

C-c C-y C-r (elpy-shell-send-region-or-buffer-and-step)

C-c C-y C-S-R (elpy-shell-send-region-or-buffer-and-step-and-go)

C-c C-y C-b (elpy-shell-send-buffer-and-step)

C-c C-y C-S-B (elpy-shell-send-buffer-and-step-and-go)

4.4.4 Shell feedback

When package eval-sexp-fu is loaded and eval-sexp-fu-flash-mode is active, the statements sent to the shell
are briefly flashed after running an evaluation command, thereby providing visual feedback.

elpy-shell-echo-input (Customize Option)
Whenever a code fragment is sent to the Python shell, Elpy prints it in the Python shell buffer (i.e., it looks
as if it was actually typed into the shell). This behavior can be turned on and off via the custom variable
elpy-shell-echo-input and further customized via elpy-shell-echo-input-cont-prompt (whether
to show continuation prompts for multi-line inputs) and elpy-shell-echo-input-lines-head /
elpy-shell-echo-input-lines-tail (how much to cut when input is long).

elpy-shell-echo-output (Customize Option)
Elpy shows the output produced by a code fragment sent to the shell in the echo area when the
shell buffer is currently invisible. This behavior can be controlled via elpy-shell-echo-output (never,
always, or only when shell invisible). Output echoing is particularly useful if the custom variable
elpy-shell-display-buffer-after-send is set to nil (the default value). Then, no window is
needed to display the shell (thereby saving screen real estate), but the outputs can still be seen in the echo area.

elpy-shell-display-buffer-after-send (Customize Option)
Whether to display the Python shell after sending something to it (default nil).

4.5 Syntax Checking

Whenever you save a file, Elpy will run a syntax check and highlight possible errors or warnings inline.

C-c C-n (elpy-flymake-next-error)

C-c C-p (elpy-flymake-previous-error)
You can navigate between any error messages with these keys. The current error will be shown in the minibuffer.

Elpy uses the built-in Flymake library to find syntax errors on the fly, so see there for more configuration options.

C-c C-v (elpy-check)
Alternatively, you can run a syntax check on the current file where the output is displayed in a new buffer, giving
you an overview and allowing you to jump to the errors from there.

16 Chapter 4. IDE Features

https://www.emacswiki.org/emacs/EvalSexpFu
https://www.gnu.org/software/emacs/manual/html_node/flymake/index.html#Top

Elpy Documentation, Release 1.29.1

With a prefix argument, this will run the syntax check on all files in the current project.

python-check-command (Customize Option)
To change which command is used for syntax checks, you can customize this option. By default, Elpy uses the
flake8 program, which you have to install separately. The elpy-config command will prompt you to do
this if Elpy can’t find the program.

It is possible to create a single virtual env for the sole purpose of installing flake8 in there, and then simply
link the command script to a directory inside your PATH, meaning you do not need to install the program in
every virtual env separately.

4.6 Documentation

Elpy provides a single interface to documentation.

C-c C-d (elpy-doc)
When point is on a symbol, Elpy will try and find the documentation for that object, and display that. If it can’t
find the documentation for whatever reason, it will try and look up the symbol at point in pydoc. If it’s not there,
either, it will prompt the user for a string to look up in pydoc.

With a prefix argument, Elpy will skip all the guessing and just prompt the user for a string to look up in pydoc.

If the autodoc module is enabled (not the case by default) the documentation is automatically updated with the symbol
at point or the currently selected company candidate.

elpy-autodoc-delay (Customize Option)
The idle delay in seconds until documentation is updated automatically.

4.7 Debugging

Elpy provides an interface to pdb, the builtin Python debugger. Note that this interface is only available for Emacs 25
and above.

C-c C-g g (elpy-pdb-debug-buffer)
Run pdb on the current buffer. If no breakpoints has been set using
elpy-pdb-toggle-breakpoint-at-point, the debugger will pause at the beginning of the
buffer. Else, the debugger will pause at the first breakpoint. Once pdb is started, the pdb commands can be used
to step through and look into the code evaluation.

With a prefix argument C-u, ignore the breakpoints and always pause at the beginning of the buffer.

C-c C-g b (elpy-pdb-toggle-breakpoint-at-point)
Add (or remove) a breakpoint on the current line. Elpy adds a red circle to the fringe to indicate the presence of
a breakpoint. You can then use elpy-pdb-debug-buffer to start pdb and pause at each of the breakpoints.

With a prefix argument C-u, remove all the breakpoints.

C-c C-g p (elpy-pdb-break-at-point)
Run pdb on the current buffer and pause at the cursor position.

C-c C-g e (elpy-pdb-debug-last-exception)
Run post-mortem pdb on the last exception.

4.6. Documentation 17

https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html#debugger-commands

Elpy Documentation, Release 1.29.1

4.8 Testing

Testing is an important part of programming. Elpy provides a central interface to testing, which allows for a good
workflow for tests.

Elpy’s test interface is built around Emacs’ compilation framework. Elpy will run test commands as a compilation job,
with all the advantages this brings.

C-c C-t (elpy-test)
Start a test run. This uses the currently configured test runner to discover and run tests. If point is inside a test
case, the test runner will run exactly that test case. Otherwise, or if a prefix argument is given, it will run all
tests.

M-x elpy-set-test-runner
This changes the current test runner. Elpy supports the standard unittest discovery runner, the Django discovery
runner, nose and py.test. You can also write your own, as described in Writing Test Runners.

Note on Django runners: Elpy tries to find manage.py within your project structure. If it’s unable to find it, it falls
back to django-admin.py. You must set the environment variable DJANGO_SETTINGS_MODULE accordingly.

This enables a good workflow. You write a test and use C-c C-t to watch it fail. You then go to your implementation
file, for example using C-u C-c C-f, and make the test pass. You can use a key bound to recompile (I use <f5>
for this) to just re-run that one test. Once that passes, you can use C-c C-t again to run all tests to make sure they
all pass as well. Repeat.

For an even more automated way, you can use tdd.el, which will run your last compile command whenever you save
a file.

4.9 Refactoring

Elpy supports various forms of refactoring Python code.

C-c C-e (elpy-multiedit-python-symbol-at-point)
Edit all occurrences of the symbol at point at once. This will highlight all such occurrences, and editing one of
them will edit all. This is an easy way to rename identifiers.

If the backend does not support finding occurrences (currently only Jedi does), or if a prefix argument is given,
this will edit syntactic occurrences instead of semantic ones. This can match more occurrences than it should,
so be careful. You can narrow the current buffer to the current function using C-x n d to restrict where this
matches.

Finally, if there is a region active, Elpy will edit all occurrences of the text in the region.

C-c C-r f (elpy-format-code)
Format code using the available formatter.

This command formats code using yapf , autopep8 or black formatter. If a region is selected, only that region is
formatted. Otherwise current buffer is formatted.

yapf and autopep8 can be configured with style files placed in the project root directory (determined by
elpy-project-root).

C-c C-r r (elpy-refactor)
Run the Elpy refactoring interface for Python code.

This command uses rope package and provides various refactoring options depending on the context.

18 Chapter 4. IDE Features

https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation.html
https://github.com/jorgenschaefer/emacs-tdd/
https://github.com/google/yapf
https://github.com/hhatto/autopep8
https://github.com/ambv/black
https://github.com/google/yapf
https://github.com/hhatto/autopep8
https://github.com/python-rope/rope

Elpy Documentation, Release 1.29.1

4.10 Django

Elpy has basic Django support such as parsing either manage.py or django-admin.py (If it does not find manage.py it
falls back to django-admin.py) for command completion assistance. Can also start runserver automatically and you
can give an ip address and port.

C-c C-x c (elpy-django-command)
Choose what command you’d like to run via django-admin.py or manage.py.

C-c C-x r (elpy-django-runserver)
Start the development server command, runserver. Default arguments are 127.0.0.1 for ip address and 8000 for
port. These can be changed via elpy-django-server-ipaddr and elpy-django-server-port.

4.11 Profiling

Elpy allows one to profile asynchronously python scripts using cProfile.

M-x elpy-profile-buffer-or-region
Send the current buffer or region to the profiler and display the result with elpy-profile-visualizer.
The default visualizer is snakeviz, a browser-based graphical profile viewer that can be installed with pip install
snakeviz. If the profiling fails, the python error output is displayed.

4.10. Django 19

https://jiffyclub.github.io/snakeviz/

Elpy Documentation, Release 1.29.1

20 Chapter 4. IDE Features

CHAPTER 5

Extending Elpy

5.1 Writing Modules

Modules are a way of easily extending Elpy with modular extensions. In essence, a module is a function which is
called once to initialize itself globally, then once every time elpy-mode is enabled or disabled, and also once if elpy is
disabled globally.

To achieve this, a module function receives one or more arguments, the first of which is the command specifier symbol,
which can be one of the following:

global-init Called once, when Elpy is enabled using elpy-enable.

global-stop Called once, when Elpy is disabled using elpy-disable.

buffer-init Called in a buffer when elpy-mode is enabled.

buffer-stop Called in a buffer when elpy-mode is disabled.

To activate a module, the user has to add the function to elpy-modules.

5.2 Writing Test Runners

A test runner is a function that receives four arguments, described in the docstring of elpy-test-at-point. If
only the first argument is given, the test runner should find tests under this directory and run them. If the others are
given, the test runner should run the specified test only, or as few as it can.

Test runners should use an interactive spec of (interactive (elpy-test-at-point)) so they can be
called directly by the user. For their main work, they can use the helper function elpy-test-run. See the
elpy-test-discover-runner for an example.

To make it possible to set the test runner as a file-, directory- or project-local variable, the function symbol should get
the elpy-test-runner property with a value of t.

21

Elpy Documentation, Release 1.29.1

5.3 Running Tests:

You can set up a working environment for Elpy using pip and cask. After installing Cask, create a new virtual
environment and run the setup script in it:

virtualenv ~/.virtualenvs/elpy
source ~/.virtualenvs/elpy/bin/activate
./scripts/setup

You can now run ./scripts/test to run Elpy’s test suite.

22 Chapter 5. Extending Elpy

https://cask.readthedocs.io/en/latest/#user-guide

CHAPTER 6

Indices and tables

• genindex

• search

23

Elpy Documentation, Release 1.29.1

24 Chapter 6. Indices and tables

Index

D
DJANGO_SETTINGS_MODULE, 18

E
elpy-autodoc-delay (customize option), 17
elpy-check (command), 16
elpy-company-backend (command), 12
elpy-config (command), 5
elpy-django-command (command), 19
elpy-django-runserver (command), 19
elpy-doc (command), 17
elpy-find-file (command), 11
elpy-flymake-next-error (command), 16
elpy-flymake-previous-error (command), 16
elpy-format-code (command), 18
elpy-get-info-from-shell (customize option),

12
elpy-goto-definition (command), 12
elpy-goto-definition-other-window (com-

mand), 12
elpy-modules (customize option), 6
elpy-multiedit-python-symbol-at-point

(command), 18
elpy-nav-backward-block (command), 10
elpy-nav-backward-indent (command), 10
elpy-nav-forward-block (command), 10
elpy-nav-forward-indent (command), 10
elpy-nav-indent-shift-left (command), 10
elpy-nav-indent-shift-right (command), 10
elpy-nav-move-line-or-region-down (com-

mand), 10
elpy-nav-move-line-or-region-up (com-

mand), 10
elpy-occur-definitions (command), 12
elpy-pdb-break-at-point (command), 17
elpy-pdb-debug-buffer (command), 17
elpy-pdb-debug-last-exception (command),

17
elpy-pdb-toggle-breakpoint-at-point

(command), 17
elpy-profile-buffer-or-region (command),

19
elpy-project-ignored-directories (cus-

tomize option), 11
elpy-project-root-finder-functions (cus-

tomize option), 11
elpy-refactor (command), 18
elpy-rgrep-symbol (command), 11
elpy-rpc-large-buffer-size (customize op-

tion), 6
elpy-rpc-python-command (customize option), 5
elpy-rpc-pythonpath (customize option), 6
elpy-rpc-restart (command), 5
elpy-set-project-root (command), 11
elpy-set-project-variable (command), 12
elpy-set-test-runner (command), 18
elpy-shell-cell-boundary-regexp (cus-

tomize option), 15
elpy-shell-codecell-beginning-regexp

(customize option), 15
elpy-shell-display-buffer-after-send

(customize option), 16
elpy-shell-echo-input (customize option), 16
elpy-shell-echo-output (customize option), 16
elpy-shell-kill (command), 14
elpy-shell-kill-all (command), 14
elpy-shell-send-buffer (command), 15
elpy-shell-send-buffer-and-go (command),

15
elpy-shell-send-buffer-and-step (com-

mand), 16
elpy-shell-send-buffer-and-step-and-go

(command), 16
elpy-shell-send-codecell (command), 15
elpy-shell-send-codecell-and-go (com-

mand), 15
elpy-shell-send-codecell-and-step (com-

mand), 15
elpy-shell-send-codecell-and-step-and-go

25

Elpy Documentation, Release 1.29.1

(command), 16
elpy-shell-send-defclass (command), 15
elpy-shell-send-defclass-and-go (com-

mand), 15
elpy-shell-send-defclass-and-step (com-

mand), 16
elpy-shell-send-defclass-and-step-and-go

(command), 16
elpy-shell-send-defun (command), 15
elpy-shell-send-defun-and-go (command),

15
elpy-shell-send-defun-and-step (com-

mand), 16
elpy-shell-send-defun-and-step-and-go

(command), 16
elpy-shell-send-group (command), 15
elpy-shell-send-group-and-go (command),

15
elpy-shell-send-group-and-step (com-

mand), 15
elpy-shell-send-group-and-step-and-go

(command), 16
elpy-shell-send-region-or-buffer (com-

mand), 15
elpy-shell-send-region-or-buffer-and-go

(command), 15
elpy-shell-send-region-or-buffer-and-step

(command), 16
elpy-shell-send-region-or-buffer-and-step-and-go

(command), 16
elpy-shell-send-statement (command), 14
elpy-shell-send-statement-and-go (com-

mand), 14
elpy-shell-send-statement-and-step (com-

mand), 14
elpy-shell-send-statement-and-step-and-go

(command), 14
elpy-shell-send-top-statement (command),

15
elpy-shell-send-top-statement-and-go

(command), 15
elpy-shell-send-top-statement-and-step

(command), 15
elpy-shell-send-top-statement-and-step-and-go

(command), 16
elpy-shell-set-local-shell (command), 14
elpy-shell-switch-to-shell (command), 14
elpy-shell-toggle-dedicated-shell (com-

mand), 14
elpy-test (command), 18
environment variable

DJANGO_SETTINGS_MODULE, 18
PATH, 17
PYTHONPATH, 6

L
library root, 5

P
PATH, 17
pop-tag-mark (command), 12
prefix argument, 9
project root, 11
python-check-command (customize option), 17
PYTHONPATH, 6
pyvenv-activate (command), 6
pyvenv-deactivate (command), 6
pyvenv-workon (command), 6

X
xref-find-apropos (command), 13
xref-find-definition-other-frame (com-

mand), 12
xref-find-definition-other-window (com-

mand), 12
xref-find-definitions (command), 12
xref-find-references (command), 13
xref-pop-marker-stack (command), 13

26 Index

	Introduction
	Overview
	Installation

	Concepts
	Configuration
	The RPC Process
	Backends
	Virtual Envs
	Modules

	Editing
	Emacs Basics
	Moving By Indentation
	Moving the Current Region

	IDE Features
	Projects
	Completion
	Navigation
	Interactive Python
	Syntax Checking
	Documentation
	Debugging
	Testing
	Refactoring
	Django
	Profiling

	Extending Elpy
	Writing Modules
	Writing Test Runners
	Running Tests:

	Indices and tables
	Index

